Phosphines are ribonucleotide reductase reductants that act via C-terminal cysteines similar to thioredoxins and glutaredoxins
نویسندگان
چکیده
Ribonucleotide reductases (RNRs) catalyze the formation of 2'-deoxyribonucleotides. Each polypeptide of the large subunit of eukaryotic RNRs contains two redox-active cysteine pairs, one in the active site and the other at the C-terminus. In each catalytic cycle, the active-site disulfide is reduced by the C-terminal cysteine pair, which in turn is reduced by thioredoxins or glutaredoxins. Dithiols such as DTT are used in RNR studies instead of the thioredoxin or glutaredoxin systems. DTT can directly reduce the disulfide in the active site and does not require the C-terminal cysteines for RNR activity. Here we demonstrate that the phosphines tris(2-carboxyethyl)phosphine (TCEP) and tris(3-hydroxypropyl)phosphine (THP) are efficient non-thiol RNR reductants, but in contrast to the dithiols DTT, bis(2-mercaptoethyl)sulfone (BMS), and (S)-(1,4-dithiobutyl)-2-amine (DTBA) they act specifically via the C-terminal disulfide in a manner similar to thioredoxin and glutaredoxin. The simultaneous use of phosphines and dithiols results in ~3-fold higher activity compared to what is achieved when either type of reductant is used alone. This surprising effect can be explained by the concerted action of dithiols on the active-site cysteines and phosphines on the C-terminal cysteines. As non-thiol and non-protein reductants, phosphines can be used to differentiate between the redox-active cysteine pairs in RNRs.
منابع مشابه
Corrigendum: Phosphines are ribonucleotide reductase reductants that act via C-terminal cysteines similar to thioredoxins and glutaredoxins
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the mater...
متن کاملRepurposing lipoic acid changes electron flow in two important metabolic pathways of Escherichia coli.
In bacteria, cysteines of cytoplasmic proteins, including the essential enzyme ribonucleotide reductase (RNR), are maintained in the reduced state by the thioredoxin and glutathione/glutaredoxin pathways. An Escherichia coli mutant lacking both glutathione reductase and thioredoxin reductase cannot grow because RNR is disulfide bonded and nonfunctional. Here we report that suppressor mutations ...
متن کاملA unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, used in DNA synthesis and repair. Two different mechanisms help deliver the required electrons to the RNR active site. Formate can be used as reductant directly in the active site, or glutaredoxins or thioredoxins reduce a C-terminal cysteine pair, which then delivers the electr...
متن کاملModifications of the active center of T4 thioredoxin by site-directed mutagenesis.
The active site sequence of T4 thioredoxin, Cys-Val-Tyr-Cys, has been modified in two positions to Cys-Gly-Pro-Cys to mimic that of Escherichia coli thioredoxin. The two point mutants Cys-Gly-Tyr-Cys and Cys-Val-Pro-Cys have also been constructed. The mutant proteins have similar reaction rates with T4 ribonucleotide reductase as has the wild-type T4 thioredoxin. Mutant T4 thioredoxins with Pro...
متن کاملThioredoxin-thioredoxin reductase--a system that has come of age.
Recent publications make it evident that the thioredoxin± thioredoxin reductase system has come of age. The four minireviews presented here attempt to put this field in perspective. The system was first recognized in the early 1960s as the reductant of methionine sulfoxide and PAPS (3 0-phosphoadenosine-5 0-phosphosulfate) in yeast and of ribonucleotides in Escherichia coli [1±3]. It became cle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014